thumbnail

SSCE Maths

Binomial Expansion Formulas

Before learning binomial expansion formulas, let us recall what is a "binomial". A binomial is an algebraic expression with two terms. For example, a + b, x - y, etc are binomials. We have a set of algebraic identities to find the expansion when a binomial is raised to exponents 2 and 3. For example, (a + b)2 = a2 + 2ab + b2. But what if the exponents are bigger numbers? It is tedious to find the expansion manually. The binomial expansion formula eases this process. Let us learn the binomial expansion formula along with a few solved examples.

What Are Binomial Expansion Formulas?

As we discussed in the earlier section, the binomial expansion formulas are used to find the powers of the binomials which cannot be expanded using the algebraic identities. The binomial expansion formula involves binomial coefficients which are of the form () (or)  and it is calculated using the formula, () =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.

Binomial expansion formula for natural powers and rational powers

Binomial Expansion Formula of Natural Powers

This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:

(x + y)n = nC0 xn y0 + nC1 xn - 1 y1 + nC2 xn-2 ynC3 xn - 3 y3 + ... + nC1 x yn - 1 nC x0yn

Here we use nC formula to calculate the binomial coefficients which says nC = n! / [(n - k)! k!]. By applying this formula, the above binomial expansion formula can also be written as,

(x + y)n = xn + n xn - 1 y1 + [n(n - 1)/2!] xn-2 y+  [n(n - 1)(n - 2)/3!]  xn - 3 y3 +... + n x yn - 1 + yn

Note: If we observe just the coefficients, they are symmetric about the middle term. i.e., the first coefficient is the same as the last one, the second coefficient is as same as the one that is second from the last, etc.

Binomial Expansion Formula of Rational Powers

This binomial expansion formula gives the expansion of (1 + x)n where 'n' is a rational number. This expansion has an infinite number of terms.

(1 + x)n = 1 + n x + [n(n - 1)/2!] x+  [n(n - 1)(n - 2)/3!]  x3 +... 

Note: To apply this formula, the value of |x| should be less than 1.

Examples Using Binomial Expansion Formulas

Example 1: Find the expansion of (a + b)3.

Solution:

To find: (a + b)3

Using binomial expansion formula,

(x + y)n = nC0 xn y0 + nC1 xn - 1 y1 + nC2 xn-2 ynC3 xn - 3 y3 + ... + nC1 x yn - 1 nC x0yn

(a + b)3 = 3C0 a3 + 3C1 a(3 - 1) b + 3C2 a(3 - 2) b3C3 a(3 - 3) b3 

= ( 3! / [(3-0)!0!] )  a3 + ( 3! / [(3-1)!1!] ) a(3 - 1) b + ( 3! / [(3-2)!2!] ) a(3 - 2) b+ ( 3! / [(3-3)!3!] ) a(3 - 3) b3

= (1) a3 + (3) ab + (3) a1 b+ (1) a0b3

= a+ 3a2 b + 3ab+ b3

Answer: (a + b)= a+ 3a2 b + 3ab+ b3.


Example 2: Find the expansion of (x + y)6.

Solution:

Using the binomial expansion formula,

(x + y)n = nC0 xn y0 + nC1 xn - 1 y1 + nC2 xn-2 ynC3 xn - 3 y3 + ... + nC1 x yn - 1 nC x0yn

(x + y)6 = 6C0 x6 + 6C1 x5 y + 6C2 x4y2 + 6C3 x3y3 + 6C4 x2y4 + 6C5 xy5 + 6C6 y6

= ( 6! / [(6-0)!0!] ) x6 + ( 6! / [(6-1)!1!] ) x5 y + ( 6! / [(6-2)!2!] ) x4y2 + ( 6! / [(6-3)!3!] ) x3y3 + ( 6! / [(6-4)!4!] ) x2y4 + ( 6! / [(6-5)!5!] ) xy5 + ( 6! / [(6-6)!6!] ) y6 

= x6 + 6x5 y + 15x4 y2 + 20x3 y3 + 15x2 y4 + 6x y5 + y6

Answer: (x + y)6 = x6 + 6x5 y + 15x4 y2 + 20x3 y3 + 15x2 y4 + 6x y5 + y6.

Example 3: Find the expansion of (3x + y)1/2 upto the first three terms using the binomial expansion formula of rational exponents where |3| < 1.

Solution:

(3x + y)1/2 = 3x (1 + y/(3x))1/2

Comparing (1 + y/(3x))1/2 with (1 + x)n, we have x =y/(3x) and n = 1/2.

The expansion of (1 + y/(3x))1/2 upto the first three terms using the binomial expansion formula is,

1 + n x + [n(n - 1)/2!] x= 1 + (1/2) (y / (3x)) + [(1/2) ((1/2) - 1)/2!] (y / (3x))2

= 1 + y / (6x) - y2 / (72x2)

Thus, the expansion of 3x (1 + y/(3x))1/2 upto the first three terms is:

3x [ 1 + y / (6x) - y2 / (72x2) ] = 3x + y / 2 - y2 / (24x)

Answer: (3x + y)1/2 = 3x + y / 2 - y2 / (24x).

No Comments

Okash@Copyright. Powered by Blogger.

Presidential conditional Grant scheme

For those that apply for presidential conditional Grant scheme should go to the their official website and update his nin number.  Follow